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SINGULAR SOLUTIONS IN AN AXISYMMETRIC FLOW

OF A MEDIUM OBEYING THE DOUBLE SHEAR MODEL

UDC 539.374S. E. Alexandrov

An asymptotic analysis of equations of an axisymmetric flow of a rigid-plastic material obeying
the double shear model in the vicinity of surfaces with the maximum friction is performed. It is
shown that the solution is singular if the friction surface coincides with the envelope of the family of
characteristics. A possible character of the behavior of singular solutions in the vicinity of surfaces
with the maximum friction is determined. In particular, the equivalent strain rate in the vicinity of
the friction surface tends to infinity in an inverse proportion to the square root from the distance to
this surface. Such a behavior of the equivalent strain rate is also observed in the classical theory of
plasticity of materials whose yield condition is independent of the mean stress.
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The double shear model [1] belongs to models of the flow of rigid-plastic materials whose yield condition
depends on the mean stress. Apparently, such a model including kinematics was first proposed in [2]. A brief review
of models of this kind can be found in [3]. These models are generalizations of the classical theory of an ideal
rigid-plastic material and are used to describe the motion of loose materials [1, 2] and deformation of some metallic
alloys [4, 5].

In the classical theory of plasticity, singular solutions can arise in the vicinity of the maximum friction
surfaces and surfaces with velocity discontinuities [6–8]. The maximum friction surface, which is a contact surface
between a rigid tool and a deformable material, is determined by equality of specific friction forces due to slipping
and the yield point due to pure shear. If the system of equations is hyperbolic, the maximum friction surface
coincides with the characteristic or envelope of the family of characteristics; singularity in the solution appears if
the friction surface coincides with the envelope. The law of the maximum friction in this formulation is used in the
theory of plasticity with the yield condition depending on the mean stress [9–12]. Solutions of particular problems
in the plane-strain state show that the asymptotic behavior of solutions in the vicinity of the maximum friction
surface within the framework of such plasticity theories depends on the material model [11]. A typical feature of
plane flows of materials obeying the model developed in [1] is the possibility of origination of singular solutions
[12]; their asymptotic behavior in the vicinity of the maximum friction surfaces coincides with the corresponding
solutions obtained within the framework of the classical plasticity [7, 8]. Thus, it seems of interest to find the
possibility of origination of singular solutions in axisymmetric flows of materials obeying the model developed in [1]
and, if such solutions exist, to find their asymptotic behavior in the vicinity of the friction surface.

The static equations of the model developed in [1] consist of equilibrium equations and the Mohr–Coulomb
yield condition. In studying axisymmetric flows, one can naturally use cylindrical coordinates r, θ, z, in which the
projection of velocity is uθ = 0, the stress σθθ is one of the principal stresses, and all derivatives with respect to θ
equal zero. Without loss of generality, we can assume that σ3 = σθθ and σ1 � σ2, where σ1, σ2, and σ3 are the
principal stresses. As the yield condition is singular, there exist several flow regimes. The cross section of the yield
surface by the plane σ = const [σ = (σ1 + σ2 + σ3)/3 is the mean stress] is shown in Fig. 1. The most interesting
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axisymmetric flows encountered in most problems correspond to regimes A and B (Fig. 1). These regimes will be
considered in the present paper. The yield condition for these regimes can be written as

σ1(1 + sinϕ) = 2c cosϕ+ σ2(1 − sinϕ), σ2 = σθθ (1)

for regime A and

σ1(1 + sinϕ) = 2c cosϕ+ σ2(1 − sinϕ), σ1 = σθθ (2)

for regime B. Here ϕ is the angle of internal friction and c is the adhesion coefficient. In terms of the stress-tensor
components in the cylindrical coordinates σrr, σzz , σθθ, and σrz, Eqs. (1) and (2) are written in the form

(σrr + σzz) sinϕ+ [(σrr − σzz)2 + 4σ2
rz]

1/2 = 2c cosϕ,

2σθθ = σrr + σzz − ε[(σrr − σzz)2 + 4σ2
rz]

1/2,
(3)

where ε = 1 for regime A and ε = −1 for regime B. We introduce an angle ψ between the r axis and the first
principal stress, which is counted from the r axis counterclockwise. Then, the yield condition (3) can be satisfied
by assuming that [1]

σrr = −p+ q cos 2ψ, σzz = −p− q cos 2ψ, σrz = q sin 2ψ, σθθ = −p− εq,

p = −(σrr + σzz)/2, q = p sinϕ+ c cosϕ.
(4)

The equilibrium equations have the form
∂σrr

∂r
+
∂σrz

∂z
+
σrr − σθθ

r
= 0,

∂σrz

∂r
+
∂σzz

∂z
+
σrz

r
= 0. (5)

Substituting Eqs. (4) into Eqs. (5), we can obtain a system of equations with respect to p and ψ. This system is
hyperbolic, and the angles of inclination of characteristics to the r axis are determined by the formulas (see, e.g., [1])

φ = ψ ± (ϕ/2 + π/4). (6)

Let α be an angle between the r axis and the tangential line to the friction surface ω at a certain point M of this
surface (Fig. 2). Then, it follow from the definition of the maximum friction law that φ = α during slipping. From
Eq. (6), we obtain the following equation on the friction surface:

ψ = α− ϕ/2 − π/4. (7)

For certainty, we choose the upper sign in Eq. (6). The second case can be examined in a similar manner. We
introduce a local orthogonal coordinate system x1, x3 at the point M so that the x1 axis is directed tangentially to
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the friction surface and the x3 axis is directed inward the deformable material (Fig. 2). Without loss of generality,
the tool can be assumed to be motionless. Then, the velocity vector u at the point M is directed along the x1 axis.
It follows from Eq. (7) that the angle α − ψ depends only on material properties and not on the geometry of a
particular problem.

We substitute Eqs. (4) into Eqs. (5) and pass to differentiation with respect to x1 and x3 by the formulas

∂

∂r
=

∂

∂x1
cosα− ∂

∂x3
sinα,

∂

∂z
=

∂

∂x1
sinα+

∂

∂x3
cosα. (8)

As a result, we obtain

[cos (α− 2ψ) sinϕ− cosα]
∂p

∂x1
+ [sinα− sin (α− 2ψ) sinϕ]

∂p

∂x3

+ 2q sin (α− 2ψ)
∂ψ

∂x1
+ 2q cos (α− 2ψ)

∂ψ

∂x3
+
q(cos 2ψ + ε)

r
= 0, (9)

[sin(α− 2ψ) sinϕ+ sinα]
∂p

∂x1
+ [cosα+ cos (α− 2ψ) sinϕ]

∂p

∂x3

− 2q cos (α− 2ψ)
∂ψ

∂x1
+ 2q sin (α− 2ψ)

∂ψ

∂x3
− q sin 2ψ

r
= 0.

We resolve system (9) with respect to the derivatives ∂p/∂x3 and ∂ψ/∂x3 and obtain

2q[sinϕ+ cos (2α− 2ψ)]
∂ψ

∂x3
− cos2 ϕ

∂p

∂x1
+ 2q sin (2α− 2ψ)

∂ψ

∂x1

+
q

r
[(ε+ sinϕ) cosα+ (1 + ε sinϕ) cos (α− 2ψ)] = 0,

(10)

[sinϕ+ cos (2α− 2ψ)]
∂p

∂x3
+ sin (2α− 2ψ)

∂p

∂x1
− 2q

∂ψ

∂x1
− q

r
[ε sin(α− 2ψ) + sinα] = 0.

The coefficients at ∂p/∂x3 and ∂ψ/∂x3 in these equations vanish if condition (7) is satisfied, and the equations
themselves yield relations along the characteristics if ∂p/∂x3 and ∂ψ/∂x3 are bounded. Let us assume that the
friction surface coincides with the envelope of the family of characteristics. Then, the characteristic relations should
not be satisfied at the friction surface; to satisfy Eqs. (10), we have to assume that
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∣
∣
∣
∂p

∂x3

∣
∣
∣ → ∞,

∣
∣
∣
∂ψ

∂x3

∣
∣
∣ → ∞ (11)

as ψ → α− ϕ/2 − π/4 and x3 → 0. In the vicinity of the friction surface, we assume that

ψ = α− ϕ/2 − π/4 +Axβ
3 . (12)

For the second condition in (11) to be satisfied, the inequality β < 1 should be valid. At the same time, the
boundedness of ψ requires that β > 0. Substituting (12) into the first equation in (10), we find that the first term
of this equation has the order O(x2β−1

3 ). As it was assumed that this term cannot be equal to zero (in this case, we
would have a characteristic equation) and cannot tend to infinity [Eq. (10) does not contain other terms that could
tend to infinity as x3 → 0], it follows that β = 1/2. Then, from Eq. (12), we obtain the dependence of the angle ψ
in the vicinity of the friction surface on x3 in the form

ψ = α− ϕ/2 − π/4 +Ax
1/2
3 + o(x1/2

3 ). (13)

Substituting Eq. (13) into the second equation of system (10) and using similar considerations, we obtain the
expression

p = p0 +Bx
1/2
3 + o(x1/2

3 ). (14)

The values of A, B, and p0 in Eqs. (13) and (14) can depend on the position of the point M on the friction surface.
The kinematic equations of the material model considered have the form [1]

∂ur

∂r
+
∂uz

∂z
+
ur

r
= 0,

(∂ur

∂z
+
∂uz

∂r

)

cos 2ψ −
(∂ur

∂r
− ∂uz

∂z

)

sin 2ψ
(15)

+ sinϕ
(∂ur

∂z
− ∂uz

∂r
+ 2ur

∂ψ

∂r
+ 2uz

∂ψ

∂z
+ 2

∂ψ

∂t

)

= 0.

Here, ur and uz are the projections of the velocity vector onto the r and z axes, respectively, and t is the time. We
introduce the absolute value of the velocity vector u and the angle γ between the r axis and the velocity vector,
which is counted from the axis counterclockwise. Then, we have

ur = u cosγ, uz = u sin γ. (16)

On the friction surface, for a chosen direction of the velocity vector (see Fig. 2), we have γ = α + π. We assume
that the behavior of γ in the vicinity of this surface is described by the function

γ = α+ π + Cxk
3 , (17)

where k is a constant, and the value of C can depend on the position of the point M on the friction surface.
Substituting (16) into (15), passing to differentiation with respect to x1 and x3 with the use of Eq. (8), resolving
the resultant equations with respect to ∂γ/∂x3 and ∂u/∂x3, and using Eqs. (13) and (17), we obtain

Ax
1/2
3

∂u

∂x3
+

∂u

∂x1
+O(xk

3 ) +O(xk−1/2
3 ) +O(1) = 0,

ACukx
k−1/2
3 + (Ax1/2

3 − Cxk
3)

∂u

∂x1
+O(x2k−1/2

3 ) +O(xk
3) +O(x1/2

3 ) = 0.
(18)

In these equations, the terms of higher orders are omitted. Taking into account that u has the order O(1) in the
vicinity of the surface x3 = 0 and comparing the exponent of the first term of the second equation in (18) with the
exponents of other terms in this equation, we can conclude that k = 1. For such a value of k, it follows from the
first equation of system (18) that the last term of this equation can be compensated only if

u = u0 +Dx
1/2
3 + o(x1/2

3 ), (19)

and Eq. (17) is written as

γ = α+ π + Cx3. (20)
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Expressions (19) and (20) show that the singular character of the velocity field in the case considered is the same
as in the classical theory of plasticity [7, 8] and in plane flows of materials obeying the double shear model [12]. In
particular, the equivalent strain rate tends to infinity near the maximum friction surface in an inverse proportion
to the square root from the distance to this surface. Such a behavior of the equivalent strain rate made it possible
to introduce the concept of a strain-rate intensity coefficient [8, 12], which can be used to describe processes that
occur in a thin layer in the vicinity of the friction surface [13, 14].

An analytica solution that describes the flow of a material obeying the double shear model through an infinite
conical convergent channel and corresponds to regime A (see Fig. 1) was obtained in [1]. The law of the maximum
friction was assumed to be valid on the channel walls. In the spherical coordinate system ρ, ϑ, θ determined by the
relations ρ2 = r2 + z2 and tan ϑ = r/z, the velocity field was obtained in the form uϑ = 0 and

uρ = −V ρ−2h(ϑ), (21)

where V is a constant and the function h(ϑ) is determined by the equation

dh

dϑ
= − 3h sin 2χ

cos 2χ+ sinϕ
. (22)

In turn, χ is also a function of ϑ and is determined by the relation

dχ

dϑ
+ 1 =

n cos2 ϕ sinϑ− (1 + sinϕ) sinϕ[sin (2χ+ ϑ) + sinϑ]
2 sinϑ sinϕ(cos 2χ+ sinϕ)

, (23)

where n is a constant. The physical meaning of the angle χ is the inclination of the first principal direction of the
stress tensor to the ρ axis. On the friction surface, for ϑ = ϑ0, we have

χ = ϕ/2 + π/4. (24)

Equation (23) should be solved under the boundary condition (24). It follows from Eqs. (21), (22), and (24) that
the derivative of the radial velocity with respect to ϑ tends to infinity when approaching the friction surface. Hence,
the velocity field is singular, and the equivalent strain rate near the friction surface, which is determined by the
expression ξeq =

√

2/3(ξijξij)1/2 (ξij are the components of the strain-rate tensor), is written in the form

ξeq =
1√
3ρ

∣
∣
∣
duρ

dϑ

∣
∣
∣ + . . . . (25)

Substituting Eq. (21) into (25) with allowance for (22) and decomposing the numerator and denominator of the
resultant expression into a series with respect to χ in the vicinity of the point χ = ϕ/2 + π/4, we obtain

ξeq =
√

3V h0

2ρ3(ϕ/2 + π/4 − χ)
+ o

[(ϕ

2
+
π

4
− χ

)−1]

, (26)

where h0 is the value of h on the friction surface. In the vicinity of the friction surface, the solution of Eq. (23)
under the boundary condition (24) can be represented in the form

(

χ− ϕ

2
− π

4

)2

=
n cos2 ϕ sinϑ0 − (1 + sinϕ) sinϕ[cos (ϕ+ ϑ0) + sinϑ0]

sinϑ0 sin 2ϕ
(ϑ0 − ϑ). (27)

Substituting (27) into (26), we can verify that

ξeq = E(ρ)/[ρ(ϑ0 − ϑ)]1/2 + o[(ϑ0 − ϑ)−1/2]. (28)

Here E is the strain-rate intensity coefficient, which depends on ρ and on parameters of the process and material [8,
12]. Relation (28) shows that the behavior of the velocity field in the particular problem considered is in agreement
with the global presentation of the velocity field (19).
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